дипломы,диссертации,курсовые,контрольные,рефераты,отчеты  на заказ

Обратная матрица

Как и в с случае с рангом для нахождения обратной матрицы существует множество различных способов. Есть более простые, есть более трудные. В контрольных работах встречаются и те и другие. Наш замечательный онлайн калькулятор позволяет вам выбрать один из двух методов на ваш вкус.

Метод, который применяется в этой программе, использует алгебраические дополнения. Данный способ нахождения обратной матрицы не является простым, а при большой размерности матрицы наоборот весьма трудоемок. Рассмотрим более детально весь алгоритм.

Первоначально необходимо вычислить определитель матрицы. Если он равен нулю, то матрица вырожденная, и найти обратную матрицу не возможно по определению. Далее находим присоединенную матрицу, т.е. такую матрицу, элементами которой являются алгебраические дополнения транспонированной первоначальной матрицы. В итоге окончательная формула примет вид, приведенный ниже:

A-1=
A*
det A

где А-1 – обратная матрица, А* – присоединенная, det A- детерминант матрицы А

На нашем сайте вы также можете:

Решение онлайн

Для нахождения обратной матрицы необходимо указать размерность исходной:

ДОБАВИТЬ КОММЕНТАРИЙ

дипломы,курсовые,рефераты,контрольные,диссертации,отчеты на заказ