Формула Бернулли

Если производятся испытания, при которых вероятность появления события А в каждом испытании не зависит от исходов других испытаний, то такие испытания называют независимыми относительно события А. Формула Бернулли. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р(0 < p < 1), событие наступит ровно k раз (безразлично, в какой последовательности), равна:

Pn(k)=Cnkpkqn-k

или

формула Бернулли

где q=1-p

Вероятность того, что в n испытаниях событие наступит: а) менее k раз; б) более k раз; в) не менее k раз; г) не более k раз, — находят соответственно по формулам:

 

Pn(0)+Pn(1)+...+Pn(k-1);

Pn(k+1)+Pn(k+2)+...+Pn(n);

Pn(k)+Pn(k+1)+...+Pn(n);

Pn(0)+Pn(1)+...+Pn(k);

 

Пример. Два равносильных шахматиста играют в шахматы. Что вероятнее: выиграть две партии из четырех или три партии из шести (ничьи во внимание не принимаются)?

Решение. Играют равносильные шахматисты, поэтому вероятность выигрыша р = 1/2; следовательно, вероятность проигрыша q также равна 1/2. Так как во всех партиях вероятность выигрыша постоянна и безразлично, в какой последовательности будут выиграны партии, то применима формула Бернулли. Найдем вероятность того, что две партии из четырех будут выиграны:

Р4 (2)=C42p2q2 = 4*3/(1*2)*(1/2)2(1/2)2 = 6/16.

Найдем вероятность того, что будут выиграны три партии из шести:

Р6(3)=C63p3q3 = 6*5*4/(1*2*3)*(1/2)3(1/2)3=5/16.

Так как Р4(2)> Р6(3), то вероятнее выиграть две партии из четырех, чем три из шести.

ДОБАВИТЬ КОММЕНТАРИЙ