Метод искусственного базиса.

Метод искусственного базиса используется для нахождения допустимого базисного решения задачи линейного программирования, когда в условии присутствуют ограничения типа равенств. Рассмотрим задачу:

max{F(x)=∑cixi|∑ajixi=bj, j=1,m; xi≥0}.

В ограничения и в функцию цели вводят так называемые «искусственные переменные» Rj следующим образом:

∑ajix+Rj=bj, j=1,m;F(x)=∑cixi-M∑Rj

При введении искусственных переменных в методе искусственного базиса в функцию цели им приписывается достаточно большой коэффициент M, который имеет смысл штрафа за введение искусственных переменных. В случае минимизации искусственные переменные прибавляются к функции цели с коэффициентом M. Введение искусственных переменных допустимо в том случае, если в процессе решения задачи они последовательно обращаются в нуль.

Симплекс-таблица, которая составляется в процессе решения, используя метод искусственного базиса, называется расширенной. Она отличается от обычной тем, что содержит две строки для функции цели: одна – для составляющей F = ∑cixi, , а другая – для составляющей M ∑Rj Рассмотрим процедуру решения задачи на конкретном примере.

Пример 1. Найти максимум функции F(x) = -x1 + 2x2 - x3 при ограничениях:

2x1+3x2+x3=3,

x1+3x3=2,

x1≥0, x2≥0, x3≥0 .

Применим метод искусственного базиса. Введем искусственные переменные в ограничения задачи

2x1 + 3x2 + x3 + R1 = 3;

x1 + 3x3 + R2 = 2 ;

Функция цели F(x)-M ∑Rj= -x1 + 2x2 - x3 - M(R1+R2).

Выразим сумму R1 + R2 из системы ограничений: R1 + R2 = 5 - 3x1 - 3x2 - 4x3, тогда F(x) = -x1 + 2x2 - x3 - M(5 - 3x1 - 3x2 - 4x3) .

При составлении первой симплекс-таблицы (табл. 1) будем полагать, что исходные переменные x1, x2 , x3 являются небазисными, а введенные искусственные переменные – базисными. В задачах максимизации знак коэффициентов при небазисных переменных в F- и M-строках изменяется на противоположный. Знак постоянной величины в M-строке не изменяется. Оптимизация проводится сначала по M-строке. Выбор ведущих столбца и строки, все симплексные преобразования при испльзовании метода искусственного базиса осуществляются как в обычном симплекс-методе.

симплекс-таблица 1

Максимальный по абсолютному значению отрицательный коэффициент (-4) определяет ведущий столбец и переменную x3, которая перейдет в базис. Минимальное симплексное отношение (2/3) соответствует второй строке таблицы, следовательно, переменная R2 должна быть из базиса исключена. Ведущий элемент обведен контуром.

симплекс-таблица 1

В методе искусственного базиса искусственные переменные, исключенные из базиса, в него больше не возвращаются, поэтому столбцы элементов таких переменных опускаются. Табл. 2. сократилась на 1 столбец. Осуществляя пересчет этой таблицы, переходим к табл. 3., в которой строка M обнулилась, ее можно убрать. После исключения из базиса всех искусственных переменных получаем допустимое базисное решение исходной задачи, которое в рассматриваемом примере является оптимальным:

x1=0; x2=7/9; Fmax=8/9.

Если при устранении M-строки решение не является оптимальным, то процедура оптимизации продолжается и выполняется обычным симплекс-методом. Рассмотрим пример, в котором присутствуют ограничения всех типов:≤,=,≥

Пример 2. Найти минимальное значение функции F(x) = 2x1 + 3x2 - x3 при следующих ограничениях

2x1+x2-3x3≥6,

x1-x2+2x3=4,

x1+x2+x3≤5,

x1≥0, x2≥0, x3≥0 .

Домножим первое из ограничений на (-1) и введем в ограничения дополнительные переменные x4 , x5 и искусственную переменную R следующим образом:

-2x1-x2+3x3+x4=-6,

x1-x2+2x3+R=4,

x1+x2+x3+x5=5,

Пусть x4 , R и x5 – базисные переменные, а x1, x2 , x3– небазисные. Функция цели F(x)=F(x)+M∑R=2x1+3x2-x3+M(4-x1+x2-2x3).

В первой симплекс-таблице (табл. 4.) коэффициенты при небазисных переменных в F-строке и M-строках знака не меняют, так как осуществляется минимизация функции. Свободный член в методе искусственного базиса в M-строке берется с противоположным знаком. Решение, соответствующее табл. 4, не является допустимым, так как есть отрицательный свободный член.

Выберем ведущий столбец и строку в соответствии с шагом 2 алгоритма решения . После пересчета получим табл. 5. Оптимизация решения в методе искусственного базиса (шаг 5 алгоритма) осуществляется вначале по M-строке. В результате x3 введем в базис, а переменную R исключим из рассмотрения, сократив количество столбцов. После пересчета получим табл. 6, которая соответствует оптимальному решению задачи.

Таблица 4

базисные переменные Свободные члены Небазисные переменные
x1 x2 x3
x4 -6 -2 -1 3
R 4 1 -1 2
x5 5 1 1 1
F 0 2 3 -1
M -4 -1 1 -2

Таблица 5

базисные переменные Свободные члены Небазисные переменные
x4 x2 x3
x1 3 -1/2 1/2 -3/2
R 1 1/2 -3/2 7/2
x5 2 1/2 1/2 5/2
F -6 1 2 2
M -1 -1/2 3/2 -7/2

Таблица 6

базисные переменные Свободные члены Небазисные переменные
x4 x2
x1 24/7 -2/7 -1/7
x3 2/7 1/7 -3/7
x5 9/7 1/7 11/7
F -46/7 5/7 20/7
M 0 0 0

Искомый минимум функции F(x) равен свободному члену F-строки табл. 6, взятому с обратным знаком, так как min F(x) = -max(-F(x)); x4 = x2 = 0;

x1=24/7; x3=2/7; x5=9/7; Fmin=46/7;

 

ДОБАВИТЬ КОММЕНТАРИЙ